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Abstract— Dental centers need to design hundreds of 

dental crowns per year using computer assisted design 
(CAD) software. Typically, technicians manually modify a 
template shape to create crowns. That process requires a 
lot of time and experience to be done correctly, which leads 
to great variability in quality. In recent years, many deep 
learning methods have been proposed to do point cloud 
completion by predicting only the missing region. Although 
these methods are potentially applicable to the task of 
dental crown design, most of them fail to generate smooth 
point clouds, which is critical for surface reconstruction. In 
this paper, we propose an end-to-end approach called MC-
Net for automatic mesh completion of dental scans. Using 
an input point cloud sampled at multiple resolutions and a 
template shape for the type of tooth to generate, MC-Net 
extracts features to guide a mesh deformation. The mesh 
generation follows a coarse-to-fine strategy and uses a 
mesh-related loss function to make the procedure stable. 
Our model can generate visually correct and accurate 
surfaces of the missing regions.  

 
Index Terms—3D shape generation, geometric deep 

learning, computer aided design, dental mesh completion.  

I. INTRODUCTION 

N dental centers, technicians need to manually design 
hundreds of crowns per year. Crown generation implies 

designing an external surface that is visible once the crown is 
installed on the tooth preparation. That design is challenging 
even with today’s computer assisted design (CAD) software. 
The technician must design a tooth shape with a complex 
morphology and patient-specific characteristics. Usually, the 
dentist starts by making a preparation with the damaged tooth. 
The preparation serves as a foundation on which the dental 
crown will be installed. Secondly, the dentist scans the prepared 
tooth and the surrounding teeth with an intra-oral scanner to get 
a 3D representation. Finally, the technician uses that 
surrounding information to design a patient-specific crown.  
 Once the technician has the 3D scan of the patient’s jaw, they 
will use a CAD system to create the crown shape. Modern 
systems have many dental application-specific tools to assist 
this process. However, considerable human intervention is still 
needed. Usually, the technician starts by picking a template 
tooth from a library and adjusting it through positioning and 
scaling to account for functional and esthetic constraints. Then, 
complex transformations may be applied to create contact 
points with the surrounding teeth. Thus, an automatic approach 
to generate patient-specific crowns with the desired positioning 
and scaling would be very useful. Also, an approach to create 
patient-specific teeth could help technicians to design more 
personalized crowns.  

In this paper, we focus on the task of tooth completion.  An 

example of tooth completion is shown in Figure 1. From this 
figure, we can see that tooth completion implies generating a 
missing shape to get a complete arch. The missing shape 
corresponds to a mesh surface similar to a crown’s external 
surface. In both cases, the surface needs to be smooth, detailed, 
and patient-specific.   

The completion problem has been addressed in the computer 
vision community since real world 3D data is often captured by 
scanners. Due to occlusions, light reflections and limitations of 
the scanners, 3D data such as point clouds are often incomplete. 
The task of point cloud completion consists in generating a 
complete point cloud from a partial observation. Deep Learning 
(DL) methods became popular because of their ability to 
complete shapes even with large missing regions. Since the 
advent of PointNet [1], many methods were proposed to 
achieve point cloud completion. Among them, Huang et al. 
proposed PF-Net [2]. Their architecture enables a multi-
resolution representation of the completions and generates 
realistic missing regions. Contrary to most shape completion 
methods in the literature, missing shapes in tooth completion 
and dental crown design can be seen as complex shapes in and 

of themselves. Furthermore, in dental crown design, the 
technicians always know where they must be located. For this 
reason, we focus on tooth-specific completions.    

There have been a few studies on how to automate dental 
crown design and how to complete teeth. In two of these works 
[3], [4],  the authors converted 3D dental scans to 2D depth 
images. Then, they used pix2pix-based approaches [5] to 
generate depth images of dental crowns. In this manner, they 
could benefit from the advances in image generation to achieve 
good performance. But their conversion from 3D to 2D 
necessarily involves information loss, especially on the sides of 
the teeth. By generating depth maps, these approaches focus on 
the crown’s occlusal surface but neglect the lateral portions, 

I

Fig. 1 Illustration of the tooth completion problem. Using a point cloud 
of the surrounding teeth, our model predicts the missing surface that the 
tooth should have, as shown by the mesh in cyan. 



2 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2020 
 

which are equally important to produce an appropriate dental 
crown. The 2D approaches do not generate complete tooth 
surfaces directly and obtaining the lateral surfaces from the 
occlusion surface is not a trivial task. To complete dental scans, 
Ping et al. proposed a voxel-based approach called SA-IFN [6]. 
Their approach uses implicit functions and a self-attention 
mechanism to capture nonlocal features to do shape completion. 
Their model can predict 3D voxels that represent the complete 
shapes, in contrast to previous methods. However, voxel-based 
approaches need a lot of unnecessary occupancy predictions,  
and this limits the output resolution. Dental technicians always 
work with high resolution scans. Thus, a scalable approach that 
can work at higher resolution would be preferred. In [7], the 
recently proposed PF-Net was used to complete teeth. The 
model can predict a variety of tooth shapes, but the predictions 
are sometimes wrongly positioned and noisy. The approach 
produces point clouds that cannot be directly used to reconstruct 
meshes. Zhu et al. [8] used a transformer-based model to 
complete teeth point clouds and apply a new voxel-based 
reconstruction. However, their method reconstructs a watertight 
mesh instead of a thin surface with a boundary. In addition, by 
generating point clouds rather than meshes including 
connectivity, their method has little control over the smoothness 
of the resulting shapes.  

 The present work is an extension of a preliminary 
conference publication [7] to achieve teeth completion. In 
practice, technicians use a preparation which is very important 
to guide their crown design. Similarly, in our proposed 
approach, we use the base of the partial tooth (referred to as a 

sliced tooth) to guide the tooth completion. The dataset to train 
our DL model now contains sliced teeth, which improves the 
positioning of the predictions. In addition, this paper presents 
1) a new architecture using a formulation of mesh deformation 
that generates meshes instead of point clouds; 2) a comparison 
with the original PF-Net for mesh generation; and 3) an ablation 
study to evaluate the effectiveness of the key components of our 
model.  

The contributions of this work are twofold: I) We propose to 
directly learn high-level geometric features of the dental scans 
for automatic tooth completion; II) We propose an end-to-end 
DL method called Mesh Completion Network (MC-Net).  

MC-Net can be seen as an extension of PF-Net. First, instead 
of learning directly a low resolution representation of the 
missing region, the proposed network learns a deformation 
from a fixed template. The template introduces both mesh 
connectivity and dental shape characteristics. Second, we 
propose to replace the concatenation and addition mechanism 
of PF-Net by the edge-based graph unpooling proposed in 
Pixel2Mesh [9]. This allows us to add new points at better 
positions and maintain the uniformity of the meshes. Third, we 
add a Laplacian regularization [9] to control the coarse-to-fine 
mesh deformation. This ensures a smooth deformation and 
avoids creating intersecting triangles and spikes. Finally, graph 
convolutions and a new formulation of the discriminator input 
are used to enhance the shape generation. 

The rest of the paper is organized as follows. Related works 
concerning point cloud completion, mesh completion and mesh 
deformation are briefly reviewed in Section II. The proposed 

Fig. 2 Architecture of MC-Net. The multi-resolution encoder (MRE) analyzes the three input resolutions to create global features. The mesh 
deformation decoder (MDD) uses the features to deform the template with three deformation blocks. (CMLP means Combined Multi-Layer 
Perceptron; IFPS is Iterative Farthest Point Sampling; CD is Chamfer Distance.) 
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method is explained in Section III. Section IV presents the 
experimental settings and results, including an ablation study. 
The limitations and future work are presented in Section V. 
Finally, Section VI concludes this paper. 

II. RELATED WORK 

A. Point Cloud Completion 

Point cloud completion is crucial in 3D computer vision 
because 3D data are often incomplete. The task consists in 
predicting the complete shape of an object from a partial 
observation. This problem has received increasing attention in 
the computer vision community since the pioneering works of 
PointNet and FoldingNet [1], [10], [11]. Many methods have 
been proposed to do point cloud completion. Some of them are 
based on generative adversarial networks (GAN) [12]. As 
mentioned in Fei et al. [13], these can be categorized into point-
based, convolution-based, graph-based, folding-based, GAN-
based, and transformer-based methods. Among these different 
architectures, some were proposed to predict only the missing 
region [2], [14]. For instance, the GAN-based architecture PF-
Net uses a multi-resolution encoder and a point pyramid 
decoder to generate the missing points hierarchically. However, 
their resulting shapes lack geometric details. PF-Net does not 
use the connectivity between points, and thus the new points 
added in the upsampling mechanism have a large degree of 
freedom. Hence, the resulting point cloud does not represent a 
smooth surface, which makes the mesh reconstruction 
challenging. Recently, transformer-based approaches like 
PoinTr and SnowflakeNet [14], [15] have been proposed. These 
approaches require long training times and are memory-
consuming, which is not ideal for practical applications in 
dentistry.  

B. Mesh Completion 

Similarly, mesh completion involves predicting a complete 
mesh from a partial observation. Mesh completion can be used 
for either small missing regions or large occlusions. For small 
missing regions like holes, geometric priors, self-similarity or 
patch encoding can be used as in [16], [17]. However, these 
methods work only for small missing regions. To complete 
larger occlusions, model-based approaches are used to capture 
the variability of a shape category. In [18], the authors propose 
an autoencoder to learn a latent space of complete shapes to 
achieve possible completions. Their method can complete 
meshes directly without any conversion or reconstruction, but 
the resulting meshes do not have the precision needed for dental 
applications. In [19], the authors propose a similar method to 
complete surfaces of the liver. They train a variational auto-
encoder (VAE) on complete shapes and perform an 
optimization at inference time. The method takes as input a 
partial point cloud and outputs a complete mesh. However, the 
two latter methods require a time-consuming optimization at 
inference. This is not suitable in our case as we would like to 
reduce the overall time required for a dental crown design. 
Importantly, only the missing tooth region is interesting in our 
application. Existing mesh completion methods generate the 

complete shape, but extracting the missing region afterwards is 
not trivial. By generating the missing surface only, a model can 
focus on the details of that region and maximize its resolution.  

C. Mesh Deformation 

Deep learning has become a popular approach for mesh 
deformation because it can learn complex transformations that 
would be difficult to determine explicitly. Mesh deformation 
has been employed to reconstruct 3D meshes from images. 
Early works on mesh reconstruction used voxels to generate 3D 
shapes [20], [21]. However, these methods are memory 
consuming, which limits the resolution and constitutes an 
important limitation of this shape representation in practice. 
Instead, Fan et al. [22] propose to generate a point set from a 
single image. But due to the large number of degrees of freedom 
of point clouds, their predictions are noisy, which makes 
subsequent mesh reconstruction difficult. To overcome that 
problem, Wang et al. propose Pixel2Mesh to generate a 3D 
mesh directly [9]. They formulated the reconstruction problem 
as a mesh deformation problem and use mesh losses to control 
a deformation of a template mesh. Their template is a uniform 
general shape that provides an initial connectivity. The 
deformation is done with graph convolution networks (GCN) 
and a perceptual pooling that provides meaningful local 
features. They later extended their architecture to reconstruct a 
mesh from multiple views [23]. More recently, new methods 
have achieved better performance than Pixel2Mesh, especially 
on shapes with positive genus [24]–[26]. In this paper, we focus 
on the generation of shapes with genus 0 (i.e., closed surfaces 
with no holes) as in Pixel2Mesh. Chen et al. proposed MR-Net 
[27] to reconstruct cardiac meshes from sparse point clouds 
using mesh deformation. They propose to use voxels to map the 
point clouds to template vertices to guide the deformation 
which is done using GCN blocks. However, that voxel 
correspondence limits the quality of the deformations.   
 

The method we present here takes inspiration from all three 
approaches seen above. Indeed, point cloud completion 
methods analyze a 3D input to generate a missing 3D output. 
They are interesting mainly because dental scans contain a lot 
of information and point cloud encoders can analyze such input 
efficiently with light algorithms. However, point cloud outputs 
cannot be directly used by technicians. For this reason, mesh 
completion also influenced our methodology because those 
approaches provide an output in the form of a mesh, as required 
in our problem. However, such methods are designed for hole 
filling or completion without high precision requirements. 
Because of the ability of mesh deformation methods to generate 
shapes that capture important details, our insight was to propose 
an architecture that analyzes an input point cloud to deform a 
template mesh into an output mesh. The details of the 
architecture will be discussed in the next section.  

III. METHOD 

Our model in an end-to-end deep learning framework that 
takes a partial point cloud as input and generates the missing 
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region in a mesh format. The overview of our framework is 
illustrated in Figure 2. The network is a GAN-based model [12] 
like PF-Net but with a new decoder. It includes a generator 
composed of a Multi-Resolution Encoder (MRE) and a Mesh 
Deformation Decoder (MDD), and a discriminator network. 
The encoder network is a point-based network that analyzes 
three resolutions of the partial point cloud to create global 
features. With the global features, the decoder progressively 
deforms a template shape into the desired 3D tooth. Unlike PF-
Net, the decoder predicts a 3D mesh instead of a 3D point cloud. 
The cascaded mesh deformation network uses deformation 
blocks and two graph-based unpoolings. Each deformation 
block takes an input mesh and predicts the new coordinates of 
each vertex using the global features. The graph unpooling 
layer increases the number of vertices while maintaining the 
initial connectivity. Starting from a low-resolution template, the 
model learns to gradually deform and add details to the mesh in 
a coarse-to-fine strategy. To control the deformation and ensure 
the smoothness of the output, a Laplacian regularization is used 
in addition to Chamfer Distance (CD) in the learning process.             

A. Initial surface 

The model always deforms a tooth-specific template to do 
patient-specific completions. The template is a downsampled 
mesh with roughly 90 vertices and 160 edges that has been 
normalized and registered with the input point cloud. The 
oriented bounding boxes of neighboring teeth are used to 
register and scale the template as shown in Figure 3. More 
specifically, a manual teeth segmentation performed by a 
technician allows us to create bounding boxes around each 
tooth. A box is then defined to position and scale the template 
points. The box has approximately the same width and depth as 
that of the sliced tooth. Its height is defined by the partial tooth 
boundary and the adjacent teeth cusps. This box-based 
registration is only an initial positioning and scaling that is 
refined by the network. In practice, automatic teeth 
segmentation [28], [29] can provide the labels to define the 
bounding boxes.     

 
Fig. 3 The template mesh (in gray) is positioned and scaled to fit 

inside a bounding box defined by the segmented input. 

B. Mesh deformation block  

Each mesh deformation block contains a linear layer, a 1D 
convolution layer and a graph convolution layer (see Figure 4). 
Graph convolutions in the deformations allow sharing of 
information between neighboring points, which is useful to 

predict appropriate displacements. In [9], the authors used 14 
graph convolution layers in the deformation blocks to deform 
an ellipsoid into an unknown shape. However, we decided to 
use a single layer because the model deforms a template that 
already has general characteristics corresponding to those of 
the missing tooth. With an input mesh and some learned 
features, each deformation block learns displacements for each 
block’s input vertices. The first deformation block takes the 
template with 𝑀௅௢௪ vertices and predicts the 𝑀௅௢௪ × 3 new 
coordinates using the 𝐹௅௢௪ features. The first intermediate 
mesh is then up sampled to have 𝑀ெ௜ௗ  vertices. The second 
deformation block takes the new upsampled mesh and predicts 
the 𝑀ெ௜ௗ × 3 new coordinates with the 𝐹ெ௜ௗ  features. Finally, 
the mesh is up sampled again, and the last deformation block 
predicts the high-resolution mesh with 𝑀ு௜௚௛ × 3 coordinates 
using the 𝐹ு௜௚௛ features. With this coarse-to-fine deformation, 
the network can apply small deformations at the beginning that 
affect many high-resolutions vertices at once. The network 
thus learns to move the template vertices to the most 
representative locations and add details in further 
deformations. 

C. Graph unpooling layer 

The goal of the graph unpooling layers is to add new vertices 
in the mesh while preserving the initial connectivity. We 
followed the edge-based graph unpooling of Pixel2Mesh [9] to 
divide each triangle into 4 smaller triangles. This allows us to 
use two points to add new vertices instead of one like in PF-
Net. This way, points are added at optimal positions and the 
upsampling can be very efficient since there are more edges 
than points. Furthermore, the edge-based unpooling maintains 
regular vertex degrees. 

 

 
Fig. 4 Details of the Mesh Deformation Decoder. MDD creates an 

output mesh along with 2 intermediate results. The graph unpooling 
layers preserve the connectivity during the coarse-to-fine generation. 
The plus circles represent add operations. Layers operating on points 
are shown in while; those operating on graphs are shown in green. 

D. Discriminator Input 

Originally in PF-Net, the discriminator receives as input the 
real shapes and the generated ones. It classifies them as real or 
fake regardless of any surrounding context. That formulation is 
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not ideal here because the model may be able to generate shapes 
that look realistic by themselves but are not compatible with the 
full input geometry. Since the input contains many more points 
than the output, we propose to concatenate the sliced tooth from 
the input point cloud and the generated shape, as shown in 
Figure 5. This way, the discriminator’s input is a complete 
tooth, which should be smooth everywhere and not have a gap 
at the intersection of the known and missing regions. A binary 
feature is added to let the discriminator know which are the 
input’s points versus the predicted ones. 

 

  
Fig. 5 An example of the discriminator's input. The points in gray in the 

lower portion are sampled from the input using teeth segmentation and 
iterative farthest point sampling (IFPS). 

E. Loss function  

We use three different losses to constrain the output shape 
and control the coarse-to-fine deformation. We use the Chamfer 
Distance (CD) loss [22] to constrain the vertex locations, a 
Laplacian regularization to maintain relative locations between 
neighboring vertices during the deformations, and an 
adversarial loss. All the losses except the adversarial loss are 
applied at each resolution. 

The CD measures the mean squared distance between two 
point clouds 𝑆ଵ and 𝑆ଶ. The measurements are done between 
each point and its closest point in the other point set as described 
in equation (1): 

 

𝑑஼஽(𝑆ଵ, 𝑆ଶ) =
ଵ

ௌభ 
∑ min

௬∈ௌమ

‖𝑥 − 𝑦‖ଶ
ଶ    ௫∈ௌభ

+

ଵ

ௌమ 
∑ min

௫∈ௌభ

‖𝑦 − 𝑥‖ଶ
ଶ

௬∈ௌమ
, (1) 

 
where one term measures the distances from the prediction to 
the ground truth and the other measures the distances in the 
opposite direction. The completion loss uses the CD 
measurement with each output resolution and specific weights 
as described in equation (2): 
 

𝑙௖௢௠௣ = 𝑑஼஽൫𝑌ு௜௚௛ , 𝑌 ்൯ + 𝛼 ∙ 𝑑஼஽(𝑌ெ௘ௗ , 𝑌 ்
ᇱ ) 

+𝛽 ∙ 𝑑஼஽(𝑌௅௢௪ , 𝑌 ்
ᇱᇱ ), (2) 

 
where 𝛼 and 𝛽 are weights and 𝑌 ் , 𝑌 ்

ᇱ , 𝑌 ்
ᇱᇱ  are the different 

resolutions of the ground truth point clouds obtained by 
iterative farthest point sampling (IFPS). 𝑙௖௢௠௣ is efficient to 

predict reasonably good vertex coordinates; however, it does 
not capture the smoothness and visual appearance of the shapes. 
 To preserve the template’s smoothness, we propose a 
Laplacian regularization. This term prevents vertices from 
moving too freely, which can cause intersecting triangles and 
degrade the template characteristics. It encourages neighboring 
vertices to have similar movements. The Laplacian loss 
compares the relative positions of one point to its neighbors 
before and after the deformation. Each relative position is 
calculated using equation (3): 
 

𝛿௣ = 𝑝 − ∑
ଵ

‖ே(௣)‖
𝑘௞∈ே(௣) , (3) 

 
where 𝑝 is a vertex in the predicted mesh and 𝑁(𝑝) are the 
neighboring vertices of 𝑝. The Laplacian loss is defined in 
equation (4): 

 

𝑙௅௔௣ = ∑ ฮ𝛿௣
ᇱ − 𝛿௣ฮ

ଶ

ଶ
௣ , (4) 

 
where 𝛿௣

ᇱ and 𝛿௣ are the relative positions before and after the 
deformation.  
 From the set of partial input point clouds 𝑋, the generator 
predicts shapes that should look like the missing point clouds in 
𝑌. The final predicted shapes and the ground truth are given to 
the discriminator network. The discriminator’s goal is to 
classify its input shapes as real or fake. Both the generator and 
the discriminator are trained together with a GAN-based loss 
function [12]. The adversarial loss is formulated in equation (5):  
 

𝐿௔ௗ௩ = ෍ log൫𝐷(𝑦௜)൯

ଵஸ௜ஸௌ

+ ෍ log (1 − 𝐷(𝐺(𝑥௝)))

ଵஸ௝ஸௌ

, 
(5) 

 
where a partial input is represented by 𝑥௜ ∈ 𝑋, a ground truth 
point cloud is represented by 𝑦௜ ∈ 𝑌 and 𝑆 is the size of the 
dataset.  
 The final loss function is described by equation (6). 

 
𝐿 =  𝜆௖௢௠௣𝑙௖௢௠௣ +  𝜆௟௔௣𝑙௅௔௣ + 𝜆௔ௗ௩𝑙௔ௗ௩  (6) 

 
where 𝜆௖௢௠௣, 𝜆௟௔௣ and 𝜆௔ௗ௩  are weights set to 0.95, 0.03 and 
0.05. 

IV. EXPERIMENTS 

A. Dataset and Preprocessing 

We used different datasets for each tooth position, each one 
associated with a tooth-specific template. In total, we used four 
datasets to generate central incisors, canines, first premolars 
and first molars. To create each dataset, the full dental arches 
were first registered to a reference dental arch using oriented 
bounding boxes. The top part of the tooth to generate was 
removed using a planar slice. Afterwards, the 3D data was 
filtered to remove any structures that were not close to the sliced 
tooth. This step created a partial input that contains only partial 
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tooth and its immediate neighborhood. Each input contained the 
sliced tooth, two adjacent teeth, three antagonist teeth, and the 
surrounding gingiva (see Figure 6). Because of lateral 
symmetry, we only generated teeth from the left side of the 
mouth, which reduced variability in the data. The preprocessed 
meshes were then converted to point clouds to be analyzed by 
the encoder, as shown in the lower part of Figure 6. 

 
Fig. 6 Illustration of an input-output pair. Half of the tooth to be 

completed is removed using a planar slice. 

The input point clouds were first normalized using z-score 
normalization along each axis. Each of the four datasets 
contained roughly 40 teeth. The training, validation and test sets 
contained 28 teeth, 6 and 6 teeth. The training sets were 
augmented using small random translations, rotations, and 
scaling.  

B. Implementation Details 

The input point clouds were downsampled with IFPS to 
4000, 2000, and 1000 points. The intermediate resolutions 
𝑀௅௢௪  and 𝑀ெ௜ௗ  were set to 93 and 351 vertices and the final 
output resolution 𝑀ு௜௚௛ to 1365 vertices. 100 input points were 
added to the 1365 points of the missing regions to get complete 
teeth to provide to the discriminator. The encoder and the 
discriminator were the same as in PF-Net [2]. The MRE 
predicted a 1920 feature vector. The displacements learned by 
the MDD were scaled down using a linear activation function 
with a slope of 0.01. This scaling ensured that, during training, 
the first deformations did not introduce distortions or artefacts 
that would be difficult to remove in later iterations. 

We implemented our network on PyTorch. The generator and 
the discriminator were trained alternately using the ADAM 
optimizer with a learning rate of 0.001 and a batch size of 6. 
Batch normalization and RELU activation units were used in 
the encoder and the discriminator but only RELU was used in 
the MDD. The model was trained for 40 epochs, which took 
15.25 hours using an NVIDIA GeForce RTX 3080 graphic 
card. During testing, our model took 4.98ms to infer a mesh 
with 1365 vertices.     

C. Comparison with State Of The Art Methods 

We evaluated our method against two baselines. The first one 

was the original architecture of PF-Net which is used to predict 
the vertex coordinates only. The second one was a slightly 
modified PF-Net called PF-Net*. This second baseline consists 
of a PF-Net with a point-based template used in the architecture 
to predict the low-resolution points similarly to MC-Net. The 
template is the same one as in MC-Net but without edges 
between the points. PF-Net* then learns low resolution relative 
coordinates instead of direct coordinates as in the original 
article [2]. That modification makes sure the model starts its 
coarse-to-fine generation with a smooth and uniform point 
cloud. The model still uses the concatenation and addition 
mechanism to add new points and to deform the point template. 
PF-Net* is interesting experimentally because it allows us to 
evaluate to what extent the model can keep the smoothness and 
uniformity of the template when working only with point 
clouds. All three architectures were trained using the same 
datasets and training methodology. To evaluate the methods, 
we used the CD between the predicted shapes and the ground 
truth shapes. For a fair comparison, all the methods have a final 
output resolution of 1365 points. However, their intermediate 
resolutions differ due to their respective upsampling 
mechanisms. The CD is a bidirectional measurement, including 
a prediction to ground truth error 𝑃𝑟𝑒𝑑 → 𝐺𝑇 and a ground 
truth to prediction error 𝐺𝑇 → 𝑃𝑟𝑒𝑑. 𝑃𝑟𝑒𝑑 → 𝐺𝑇 indicates how 
different the prediction is from the ground truth, while 𝐺𝑇 →
𝑃𝑟𝑒𝑑 indicates how much of the ground truth surface is covered 
by the predicted one. 

1) Quantitative evaluations 
Table I shows the results for the three architectures with 

different tooth position datasets. MC-Net’s hyperparameters 
were determined by experiments on premolars only. Our 
method outperforms the two other networks for both the 𝐺𝑇 →
𝑃𝑟𝑒𝑑 and 𝑃𝑟𝑒𝑑 → 𝐺𝑇 errors, in the case of premolars. Our 
network can predict shapes that are closer to the ground truth 
and that cover more of the ground truth regions. The premolars 
generated by MC-Net have an average CD measure of 0.85 ∗

10ିଶ. By de-normalizing each CD measurement and averaging 
them all, the mean CD corresponds to a physical distance of 
0.22 millimeters. The results of PF-Net* are consistently better 
than those of PF-Net. For incisors, canines and molars, PF-Net* 
yields the lowest errors of all three methods. However, lower 
CD does not necessarily lead to a better mesh model. To 
demonstrate this, qualitative results are shown in the next 
section.  

Table I Tooth completion results after 6-fold cross-validation. The 
reported metrics are [Pred  GT / GT  Pred]. Resulting normalized 
CD values are scaled by 100. 

Category PF-Net PF-Net* MC-Net 

Incisor #11, #21 4.92/3.38 2.41/1.83 3.08/2.71 
Canine #13, #23 2.99/1.94 1.59/0.99 1.66/ 1.32 

Premolar #14, #24 2.71/1.85 1.08/0.90 0.89/0.81 

Molar #16, #26 3.09/2.28 1.22/1.02 1.24/1.24 
Mean 3.43/2.36 1.58/1.19 1.71/1.52 
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Fig. 7 Examples of mesh completions by the different architectures. a) 
partial input meshes used to create points clouds; b) generated teeth 
with PF-Net; c) generated teeth with PF-Net*; d) generated teeth with 
MC-Net; e) ground truth meshes. In all cases except d), ball pivoting 
reconstruction was used to create meshes from point clouds. Holes in 
the ground truth and the prediction meshes are due to reconstruction 
artefacts.  

2) Qualitative evaluation 
As mentioned above, the CD metric does not tell us about the 

smoothness and visual appearance of the predicted shapes. 
Therefore, a qualitative evaluation is necessary to judge the 
correctness of the tooth completions. Figure 7 provides several 
examples of visual results from the three models, as surface 
meshes. The figure shows the partial input, the three predictions 
and the ground truth in each case. To convert the point cloud 
results into meshes, we used a standard algorithm (ball pivoting 
reconstruction) [30].  

As we can see in Figure 7, the mesh reconstruction from PF-
Net and PF-Net*’s point clouds is non-trivial. With PF-Net, the 
reconstructed meshes are sometimes wrongly positioned, which 
significantly affects the quality of the predictions. In contrast, 
with PF-Net*, the meshes are better positioned and contain 
more details. However, with both architectures, the final 
meshes contain spikes, intersecting triangles, and holes. These 

artefacts result from the large number of degrees of freedom 
when no regularization is used. The resulting noise in the point 
clouds degrades the quality of the reconstruction results.  

Unlike the baselines, our model predicts meshes directly. Its 
components allow us to carefully deform the template into a 
smooth continuous surface. Indeed, as revealed in Figure 7, 
MC-Net’s predictions are smoother, more uniform and detailed 
than the baseline shapes from PF-Net and PF-Net*. 

D. Ablation Study 

We performed an ablation study to evaluate the effectiveness 
of different components of MC-Net. The ablation study is done 
using the premolar dataset. The validation set was used to report 
results. We introduced a new metric called ICP-CD. It measures 
the CD after an Iterative Closest Point (ICP) registration of the 
prediction with respect to the ground truth. This metric 
evaluates the shape without any positional bias.  

1) Effectiveness of the tooth template 
Using a half sphere template instead of a tooth template 

implies learning a more challenging deformation. Indeed, the 
generated shapes starting from a half sphere are smoother and 
contain fewer curvatures. As seen in Figure 8, the model 
deforms the half sphere into teeth that lack grooves that are 
characteristic of normal teeth. This is problematic because the 
designed shape should have similar grooves as the other 
patient’s teeth to be realistic. To get grooves using a half sphere 
template, the deformation blocks would need to be more 
complex, and the model would have to learn all the 
characteristics of dental shapes from scratch. As shown in 
Table II and Figure 8, our full model can generate correct teeth 
with simple deformation blocks because the tooth template 
provides important knowledge of the intended shape. 
2) Effectiveness of Laplacian regularization 
As shown in Figure 8, the Laplacian loss is important for the 

smoothness of the predictions. Without it, the generated shapes 
are much less realistic. The noise introduced causes overlaps 
with the surrounding teeth, which is not desirable. The noise 
also increases the CD as shown in Table II. The Laplacian 
regularization is hence a key component of MC-Net, ensuring 
that the predictions remain smooth.    
3) Effectiveness of graph convolutions 
As shown by the qualitative and quantitative results, the 

single graph convolution layer in each mesh deformation block 
contributes very little to the results. It changes the shape 
slightly, especially on the occlusion surface. The predictions 
using graph convolutions have smoother grooves compared to 
those without them. Indeed, with only one layer, a point 
receives only information from its direct neighbors. This helps 
the model to predict better displacements locally to avoid 
undesired surface folds. By adding more graph convolution 
layers, each point would receive information from a larger 
neighborhood, but this would increase the model complexity.  
4) Effectiveness of the new discriminator input 
According to Table II., the points describing the sliced tooth 

added to the discriminator’s input help to reduce the CD. This 
result is not surprising because the predicted shape is supposed 
to form a realistic whole tooth when joined with the partial 
input. Therefore, the positions of the boundary points are an 
important aspect of the prediction. Using the new input 
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formulation, the adversarial loss can provide a more 
meaningful gradient. The cost function implicitly encourages 
the predicted boundary points to be close to the partial input’s 
boundary, i.e. the base of the tooth. As shown in Figure 8, the 
predictions have a better fit with the partial input when the new 
input formulation is used.  

    
Table II Ablation study to evaluate the effect of different components 

of our MC-Net model. Each row reports the average error metrics when 
removing the corresponding component. Resulting normalized CD 
values are scaled by 100.  

Experiment CD ICP-CD 

- Tooth template 1.119 0.562 

- Laplacian 0.971 0.421 

- Graph convolution 0.659 0.302 

- Discriminator 
input modification 

0.670 0.307 

Full model 0.659 0.291 

    

V. DISCUSSION 

The improvements of PF-Net* over PF-Net as shown by the 
last row in Fig. 7 are mainly due to the positioning of the point 
cloud template. The initial positioning helps the model 
understand precisely where the predicted mesh should be 
located with respect to the partial input. Thus, the template 
positioning allows both PF-Net* and MC-Net to reduce the CD 
error metric. PF-Net* produces a point cloud with fewer 
constraints than MC-Net. This greater freedom allows the 
model to reduce the CD, but it does not improve the visual 
appearance of the meshes, as revealed in our qualitative 
evaluation (see Figure 7). 

With PF-Net*, even if the provided point template is smooth 
and uniform, the decoder still introduces noise and artefacts that 
affect the CD and the smoothness. The template characteristics 
are lost and the model is not able to preserve its smoothness. 
This problem is due to the concatenation and addition 
mechanism that does not exploit connectivity information when 
adding new points. Therefore, new points in PF-Net* and PF-
Net have a large degree of freedom, which creates noise. Since 
we want to complete a surface of a known shape category, the 
flexibility of the point cloud approach does not provide any 
advantage; instead, it creates a smoothness problem. 

By contrast, MC-Net’s predictions are very smooth. They 
benefit from the edge-based graph unpooling and the Laplacian 
regularization. The unpooling preserves the initial connectivity 
and maintains the smoothness during the upsampling. 
Meanwhile, the Laplacian regularization provides a meaningful 
gradient to generate smooth meshes with relevant details as 
demonstrated in the ablation study. That regularization reduces 
the noise and the CD at the same time. Its effect is more 
apparent in the qualitative results as shown in Figure 7. By 
finetuning the Laplacian regularization weight for each 

category of teeth, as we did for the premolars, MC-Net could 
provide optimal results for any tooth position. 

We made several design choices with the aim of having more 
control over the mesh generation process and producing 
appropriate shapes for tooth completion. However, our method 
may produce meshes with incorrect boundaries. The boundary 
seems to be a difficult region for the model to understand. This 
is unexpected because the partial input contains a boundary that 
tells the network where the generated mesh must begin. 
However, our results indicate that that constraint is not explicit 
enough yet. This may be due to the standard CD formulation, 
in which all the points are equally important. A weighted CD 
giving more importance to the boundary points could help with 
this problem. A better template initialization could also be 
explored.  Furthermore, a transformer-based encoder could help 
to capture dependencies between the boundary points at a 
broader scale.  

Other improvements to our current approach could be 
considered. Among them, a mesh encoder could potentially 
provide better features to guide the shape generation than the 
currently used point encoder. Additionally, a functionality-
aware loss function could help the predicted tooth to have better 
contact points with adjacent teeth. Finally, adding more graph 
convolution layers would allow information sharing between 
more distant points in the mesh generation. 

MC-Net addresses the task of dental mesh completion, which 
is closely related but not identical to the task of dental crown 
generation. One difference is that tooth preparations have quite 
variable shapes, and the crown must fit “around” the base as 
opposed to extending a previously sliced tooth. Another 
difference lies in the crown itself, which must be a closed shape 
rather than the completion of one. On the other hand, real teeth 
(that our model learns to complete) have greater variability than 
crowns; the latter are typically adapted from templates using 
standard techniques for sizing and contact points. Therefore, the 
two problems are of comparable complexity, and an appropriate 
adaptation of our methodology could lead to dental crowns with 
better personalization than existing techniques.  

VI. CONCLUSION 

We have presented an approach to perform mesh completion 
from a partial input point cloud. Our model, called MC-Net,  
controls the mesh completion process using different mesh-
related losses, graph unpooling, information propagation along 
edges and a mesh template. Our results show that MC-Net can 
complete single surfaces accurately compared to the state-of-
the-art PF-Net. The predicted surfaces are always smooth and 
are sized accurately. Thus, we believe that this work will be 
beneficial to subsequent research on tooth completion and to 
the related problem of dental crown generation.  
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